THE LAMINAR BOUNDARY LAYER UNDER THE COAXIAL FLOW PAST A CYLINDER AND ON A CONTINUOUS CYLINDER

V.PECHOČ and J.KARNIŠ

Research Institute of Chemical Fibres, Svit

Received July 28th, 1974

Analytical solutions of the boundary layer on a continuous cylinder and in the flow past a cylinder for small values of the parameter $X = vx/UR^2$ are used to determine the error of the friction coefficient calculated by the approximate Kármán–Pohlhausen method. In case of the flow past a cylinder the earlier published results were confirmed and given precision; for the continuous cylinder it was found that the error of the approximate solution increases with X from 8% for X = 0 to 8.7% for X = 0.2. According to Cebeci's calculations it is apparent that the error does not decrease even for larger $X (X \le 250)$ but remains between 8 and 9%.

The paper deals with the solution of the laminar boundary layer on a continuous cylinder. An example of such a cylinder may be for instance a fibre of constant radius moving at a steady speed between the feeder and the winding reel.

The problem of the boundary layer on a continuous moving flat surface and cylinder has been solved first by Sakiadis^{1,2}. The solution on the cylinder was obtained by the approximate Kármán-Pohlhausen method¹ and analytically for the continuous flat surface². Further papers concerning the continuous cylinder use either identical methods of solution in only formal modifications³⁻⁵, or other approximate methods^{6,7}. For this reason this work concentrated on accurate solution of the boundary layer equations on a continuous cylinder for small values of the curvature parameter X (Eq. (6)). Simultaneously, the published solutions for the boundary layer in the flow past a cylinder⁸⁻¹³ were verified in the same region of the parameter X and given precision.

THEORETICAL

Differential equations for the laminar boundary layer in the flow past a cylinder and that on a continuous cylinder differ only in the boundary conditions. Their solutions, accordingly, will be obtained simultaneously.

Designating the coordinate in the direction of the axis of the cylinder by x and that perpendicular to the axis by r (its origin at the axis), the respective velocities in the direction of and perpendicular to the axis by u and v, the radius of the cylinder by R and the constant velocity of the bulk flow (flow past a cylinder) or the speed

of the cylinder (continuous cylinder) by U, the laminar boundary layer may be described with commonly accepted simplifying assumptions by

$$r(\partial u/\partial x) + \partial(rv)/\partial r = 0, \qquad (1)$$

$$u(\partial u/\partial x) + v(\partial u/\partial r) = v[(\partial^2 u/\partial r^2 + r^{-1} \partial u/\partial r)], \qquad (2)$$

with the boundary conditions

flow past a cylinder continuous cylinder

$$r = R$$
: $u = v = 0$ $u = U$; $v = 0$ (3)

$$r \to \infty$$
, or $u = U$; $v = 0$; $u = v = 0$; $\partial u / \partial r = 0$. (4)
 $x = 0$, $r > R$: $\partial u / \partial r = 0$

The familiar transformation, i.e. introducing the stream function as

$$\partial \psi / \partial x = -rv; \quad \partial \psi / \partial r = ru,$$
 (5)

the dimensionless coordinates ξ and η , to replace x and r as

$$\xi = 4(vx/R^2U)^{0.5} = 4X^{0.5}, \qquad (6)$$

$$\eta = (U/vx)^{0.5} \left[(r^2 - R^2)/4R \right]$$
(7)

and the dimensionless function $f(\xi, \eta)$ instead of the stream function ψ as

$$f(\xi, \eta) = \psi / (v x R^2 U)^{0.5}$$
(8)

yields the following partial differential equation

$$\frac{\partial}{\partial \eta} \left[(1 + \xi \eta) \frac{\partial^2 f}{\partial \eta^2} \right] + f \frac{\partial^2 f}{\partial \eta^2} + \xi \left[\frac{\partial f}{\partial \xi} \frac{\partial^2 f}{\partial \eta^2} - \frac{\partial f}{\partial \eta} \frac{\partial^2 f}{\partial \xi \partial \eta} \right] = 0.$$
(9)

(A simplified notation f is used for the function $f(\xi, \eta)$ in the last equation for the sake of brevity).

The boundary conditions in the new coordinates are

flow past a cylinder continuous cylinder

$$f(\xi, 0) = 0$$
, $f(\xi, 0) = 0$, (10)
 $(\partial f / \partial \eta)_{\eta=0} = 0$, $(\partial f / \partial \eta)_{n=0} = 2$.
 $(\partial f / \partial \eta)_{\eta \to \infty} = 2$, $(\partial f / \partial \eta)_{\eta \to \infty} = 0$. (11)

For solving Eq. (9) in region of small values of ξ one can use the power expansion of the function $f(\xi, \eta)$ as

$$f(\xi,\eta) = \sum_{i=0}^{\infty} \xi^i f_i(\eta) .$$
⁽¹²⁾

Taking only four terms of the last series which converges rapidly for small ξ four ordinary differential equations for the functions f_0 through f_3 result:

$$f_{0}^{''} + f_{0}f_{0}^{''} = 0, \qquad (13)$$

$$f_{1}^{"'} + f_{0}f_{1}^{"} - f_{0}f_{1}^{'} + 2f_{0}^{"}f_{1} + \eta f_{0}^{"'} + f_{0}^{"} = 0, \qquad (14)$$

$$f_{2}^{"} + f_{0}f_{2}^{"} - 2f_{0}f_{2}' + 3f_{0}^{"}f_{2} + \eta f_{1}^{"'} + f_{1}^{"}(1+2f_{1}) - (f_{1}')^{2} = 0, \qquad (15)$$

$$f_{3}^{""} + f_{0}f_{3}^{"} - 3f_{0}f_{3}^{'} + 4f_{0}^{"}f_{3} + \eta f_{2}^{""} + f_{2}^{"}(1+2f_{1}) - 3f_{1}f_{2}^{'} + 3f_{1}^{"}f_{2} = 0, \qquad (16)$$

with the boundary conditions

flow past a cylinder continuous cylinder

$$\eta = 0: \quad f_{i} = 0 \qquad \qquad f_{i} = 0 \qquad (17)$$
$$f_{i}^{'} = 0 \qquad \qquad f_{0}^{'} = 2; \quad f_{1}^{'} = f_{2}^{'} = f_{3}^{'} = 0$$

$$\eta \to \infty$$
: $f'_0 = 2$; $f'_1 = f'_2 = f'_3 = 0$ $f'_1 = 0$. (18)

Eqs (13) through (16) have been solved by the Taylor expansion and the Runge-Kutta method taking by trial and error the value of $f'_i(0)$ so as to satisfy to a maximum accuracy possible with the used calculator HP 9100 A the boundary condition (18). The accuracy of the solution was tested by repeated calculation with the integration step halved.

Collection Czechoslov, Chem. Commun. [Vol. 41] [1976]

The maximum error, Δ , of the calculated values $f'_i(0)$ shown in Table I together with the so far published data, is 5. 10^{i-10} .*

The obtained solution enables calculation of the local and the mean friction coefficient c_f and \bar{c}_f to be made. The local friction coefficient

$$c_{\rm f} = 2\tau_{\rm w}/\varrho U^2 = \pm 0.5 {\rm Re}_{\rm x}^{-0.5} [\partial^2 f(\xi,\eta)/\partial\eta^2]_{\eta=0}$$
(19)

expressed in terms of the functions f_i is

$$c_{\rm f} = \pm \operatorname{Re}_{\rm x}^{-0.5} \sum_{\rm i=0}^{3} 2^{2{\rm i}-1} X^{0.5{\rm i}} f_{\rm i}^{"}(0) . \qquad (20)$$

Similarly for the mean friction coefficient we have

$$\vec{c}_{f} \equiv (1/X) \int_{0}^{X} c_{f} \, dX = \pm \operatorname{Re}_{x}^{-0.5} \sum_{i=0}^{3} 2^{2i} (i+1)^{-1} X^{0.5i} f_{i}(0) \,.$$
(21)

The positive sign in Eqs (19) through (21) refers to the flow past a cylinder; the negative sign to the continuous cylinder.

Substituting the obtained values of $f_i^{"}(0)$ in Eqs (20) and (21) the expressions for the friction coefficients take the form:

for the flow past a cylinder

$$c_{\rm f} \mathbf{R} \mathbf{e}_{\rm x}^{0.5} = 0.66411 + 1.38864 X^{0.5} - 1.31316 X + 3.25069 X^{1.5} , \qquad (22)$$

$$\bar{c}_{f} \operatorname{Re}_{x}^{0.5} = 1.32823 + 1.38864X^{0.5} - .0.87544X + 1.62534X^{1.5}; \qquad (23)$$

for the continuous cylinder

$$c_{\rm f} \mathbf{R} \mathbf{e}_{\rm x}^{0.5} = 0.88750 + 0.76040 X^{0.5} - 0.14830 X + 0.07437 X^{1.5} , \qquad (24)$$

$$\bar{c}_f \mathbf{R} \mathbf{e}^{\mathbf{0}\cdot\mathbf{5}} = 1.77499 + 0.76040 X^{0.5} - 0.09887 X + 0.03718 X^{1.5} .$$
(25)

In view of the used expansion the applicability of these equations is restricted to $X \leq 0.015$ for the flow past a cylinder where the fourth term of the series for the local coefficient amounts to 0.7% of the sum of the preceding terms and 30% of the third term. The applicability in case of the continuous cylinder, judging again from the magnitude of the fourth term (22% of the third term and 0.6% of the sum of the preceding terms) is restricted to $X \leq 0.2$.

^{*} Detailed tables of $f_i^m(\eta)$ for $0 \le i \le 3$, the order of derivative $0 \le m \le 2$ and for $\eta \le 5.6$ for the flow past a cylinder, or $\eta \le 18.4$ for the continuous cylinder, will be made available upon request by the authors.

	this work						nuous cylindar	
••••••••••••••••••••••••••••••••••••••		earlier (data	reference	this wo	Å	earlier data	reference
0	1.328229345	1.3282	12932 ^a	6	1.77499	3253	-1.77500^{a}	7
-	0.69432220	0.6943	22	10	0-38019	872	1	- 4 1 H
2	0.1641444	- 0.1641	44	10	0-01853	62		
m	0.101584	0.1016		11	-0.00232	4		
۲	c _f Re	.0.5 x	$(28) - (22)_{o}$			ct	Re ^{0.5}	(28) - (22)
v	Eq. (22)	Eq. (28)	(22)	, c	V	Eq. (22)	Eq. (28)	(22)
0.00001	0-66849	0.58155	- 13-00	0	001	0.70681	0.61815	- 12-54
0-00005	0.67386	0-58670	12-93	0	005	0·75689	0.66545	
0-0001	0.67787	0.59054		0	10.	0.79309	0-69911	-11-85

Collection Czechoslov, Chem. Commun. [Vol. 41] [1976]

A COMPARISON OF THE ACCURATE AND APPROXIMATE SOLUTIONS

An approximate solution of the boundary layer equations by the Kármán–Pohlhausen method has been performed for the flow past a cylinder by Glauert and Lighthill¹⁴; for the continuous cylinder, as has been mentioned, by Sakiadis¹. The friction coefficient was expressed from these solutions as

$$c_{\rm f} {\rm Re}_{\rm x}^{0.5} = 2 X^{0.5} / A$$
 , (26)

where A is the inverse value of the dimensionsless velocity gradient at the surface of the cylinder depending only on the parameter X

$$A = \pm (U/R) \left(\frac{\partial r}{\partial u} \right)_{\mathsf{R}}, \qquad (27)$$

with the positive (negative) sign for the flow past a cylinder (continuous cylinder).

A as a function of X may be computed from equations obtained by modification of those presented in the original papers:

Flow past a cylinder:

$$X = \sum_{n=1}^{\infty} 2^{n-1} A^{n+1} n^2 / (n+1) (n+2) !$$
 (28)

Continuous cylinder:

$$X = \sum_{n=1}^{\infty} 2^{n} A^{n+1} n / (n+1) (n+2) !$$
⁽²⁹⁾

A comparison of the presented accurate solution of Eq. (9) for small X with the approximate solution for the flow past a cylinder and a continuous cylinder is given in Tables II and III.

Solution of the boundary layer on the continuous cylinder for large X has not been published to date. The values tabulated in Table IV were computed by the method due to Cebeci¹³ worked out for the flow past a cylinder.*

CONCLUSION

The results for the flow past a cylinder give precision to the earlier analyses; it was found that the error of the approximate solution decreases with increasing X in the whole range of X, $(refs^{13-15})$ even though the absolute values of the deviations reported by various authors are somewhat different as a consequence of the various methods of solving Eq. (9).

^{*} The authors wish to thank Dr T. Cebeci for furnishing the results of numerical solution of Eq. (9) with the boundary conditions for the continuous cylinder¹⁵.

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				-					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2	cf R	e ^{0.5}	$(29) - (24)_{o/}$	2	c _f R	.ex	$(29) - (24)_{o_{o_{o_{o}}}}$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	v	Eq. (24)	Eq. (29)	(24)	V	Eq (24)	Eq. (29)	(24)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1000-0	0.89509	0.82316		0-01	0.96213	0.88237	- 8.29	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.00025	0.89949	0.82702	- 8-06	0.02	0.99228	0.90920	8.37	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.001	0-91140	0.83750	-8-11	0-025	1.00432	0.91994		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0-00125	0.91420	0.83997	-8.12	0.1	I·11549	1.01976	— 8·58	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0-0025	0.92516	0.84963	-8.16	0.2	1.20459	I·10004	-8.68	
TABLE IV TABLE IV Local Friction Coefficient for a Continuous Cylinder and $X \leq 250$ $r_{c_1} Re_{\alpha}^{0.5}$ $r_{a_1} b$ $r_{a_1} b$ 0.00025 0.83397 -8.01 2.5 1.41967 -8.31 0.00125 0.9237 -8.01 2.5 -7.90 1.73112 -8.31 0.00125 0.93397 -8.01 2.5 2.5166 1.41967 -8.31 0.00125 0.93397 -8.01 2.56 <th col<="" td=""><td>0.005</td><td>0.94055</td><td>0.86324</td><td> 8.22</td><td>(0.25</td><td>1.23997</td><td>1-13183</td><td>- 8.72)</td></th>	<td>0.005</td> <td>0.94055</td> <td>0.86324</td> <td> 8.22</td> <td>(0.25</td> <td>1.23997</td> <td>1-13183</td> <td>- 8.72)</td>	0.005	0.94055	0.86324	8.22	(0.25	1.23997	1-13183	- 8.72)
XCebeci ¹⁵ Eq. (29) $(b - a)/a$ %XCebeci ¹⁵ Eq. (29) $(b - a)/a$ %abababababbababb0:000250:89800:82702 $-7:90$ 111:5491:41967 $-8:35$ 0:001250:91310:83997 $-8:01$ 2:51:8661:73112 $-8:21$ 0:00250:92370:84963 $-8:02$ 52:51:8661:73112 $-8:21$ 0:00250:92370:83244 $-8:02$ 552:2442:06136 $-8:14$ 0:00250:99030:86324 $-8:10$ 57:331547 $-7:80$ 0:010:90020:88237 $-8:19$ 2:53:5963:31547 $-7:80$ 0:0251:00220:99030:91994 $-8:19$ 1005:7985:30616 $-8:48$ 0:0251:10376 $-8:13$ 1:01976 $-8:43$ 2:007:4586:81956 $-8:46$ 0:11:1131:01976 $-8:43$ 2:007:4586:81956 $-8:46$ 0:251:2361:13183 $-8:43$ 2:008:1257:40704 $-8:44$		cf R	e <mark>v</mark> •5			cf R	e <mark>0</mark> •5		
ababab 0.00025 0.8980 0.82702 -7.90 1 1.549 1.41967 -8.35 0.00125 0.9131 0.83397 -8.01 2.5 1.866 1.73112 -8.32 0.00125 0.9237 0.84963 -8.02 2.5 1.866 1.73112 -8.14 0.0025 0.9237 0.84963 -8.02 5 2.244 2.06136 -8.14 0.005 0.9389 0.86324 -8.06 10 2.721 2.50196 -8.05 0.01 0.9602 0.88237 -8.11 2.5 3.31547 -7.80 0.025 0.9903 0.90920 -8.19 100 5.798 5.30616 -8.48 0.1 1.113 1.01976 -8.33 200 7.458 6.81956 -8.46 0.25 1.236 1.13183 -8.43 250 8.125 7.4074 -8.84	X	Cebeci ¹⁵	Eq. (29)	$(b-a)/a \ \%$	X	Cebeci ¹⁵	Eq. (29)	(b-a)/a %	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		a	<i>q</i>			<i>a</i>	<i>q</i>		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.00025	0.8980	0-82702	06.7	, -	1.549	1-41967	-8.35	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.00125	0.9131	0.83997	-8.01	2.5	1.866	1-73112	-8.21	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0-0025	0-9237	0-84963	- 8-02	5	2·244	2·06136	-8.14	
0.01 0.9602 0.88237 -8·11 25 3·596 3·31547 -7·80 0.02 0.9903 0.90920 -8·19 50 4·546 4·16981 -8·28 0.02 0.9903 0.90920 -8·19 50 4·546 4·16981 -8·28 0.025 1·002 0·91994 -8·19 100 5·798 5·30616 -8·48 0·1 1·113 1·01976 -8·38 200 7·458 6·81956 -8·56 0·25 1·236 1·13183 -8·43 250 8·125 7·40704 -8·84	0.005	0.9389	0·86324	8·06	10	2.721	2.50196		
0.02 0.9903 0.99020 -8·19 50 4·546 4·16981 8·28 0.025 1·002 0·91994 -8·19 100 5·798 5·30616 8·48 0·1 1·113 1·01976 8·38 200 7·458 6·81956 8·56 0·25 1·236 1·13183 8·43 250 8·125 7·40704 8·56	0.01	0-9602	0.88237	-8-11	25	3.596	3-31547	-7.80	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0·02	0.9903	0-90920	- 8.19	50	4-546	4.16981	- 8.28	
0·1 1·113 1·01976 8·38 200 7·458 6·81956 8·56 0·25 1·236 1·13183 8·43 250 8·125 7·40704 8·84	0·025	1·002	0.91994	- 8.19	100	5.798	5-30616	8.48	
0.25 1.236 1.13183 -8·43 250 8·125 7·40704 -8·84	0.1	1.113	1.01976	- 8.38	200	7-458	6.81956	-8-56	
	0.25	1-236	1-13183	8-43	250	8.125	7-40704	— 8·84	

729

(27))

For the continuous cylinder, however, the deviation of the approximate and the accurate solution in region $X \leq 0.2$ increases which is confirmed also by Cebeci's results¹⁵ for small values of X ($X \leq 0.25$). In the region $0.25 \leq X \leq 250$ the deviation of Cebeci's results¹⁵ remains practically constant and its fluctuation is probably caused by the numerical method of solution.

The approximate solution of Sakiadis underestimates the friction factor for the continuous cylinder in region $X \leq 250$ by about 8%. The assumption of Bourne and Elliston⁵, that the error of Sakiadis' solution decreases with increasing X, thus is not correct. Nor are correct the results of Lee and Davis⁷ according to which the Sakiadis' solution for small values of X is correct but for large X overestimates the friction factor. Solution of Vasudevan and Middleman⁶ exhibiting marked deviations from Sakiadis' results in region of small X is based on false assumptions.¹⁶ To give precision to Cebeci's solution in region $0.25 \leq X \leq 250$ and its extension to X > 250 is the purpose of the next paper.

LIST OF SYMBOLS

A	dimensionless inverse velocity gradient at the surface of cylinder (Eq.
$c_{\rm f} = 2\tau_{\rm w}/U^2 \varrho$	local friction coefficient
\overline{c}_{f}	mean friction coefficient
f	dimensionless stream function (Eq. (8) and (12))
r	radial coordinate originating on axis
R	radius of cylinder
$\operatorname{Re}_{R} = RU/v$	Reynolds number based on radius
$\operatorname{Re}_{\mathbf{x}} = x U / v$	Reynolds number based on length
и	axial velocity component
U	speed of cylinder, or bulk fluid velocity
v	radial velocity component perpendicular to axis of cylinder
x	coordinate in direction of axis of cylinder
$X = \mathrm{Re}_{\mathbf{x}}/\mathrm{Re}_{\mathbf{R}}^{2}$	transformed coordinate ξ (Eq. (6))
η	transformed coordinate r (Eq. (7))
v	kinematic viscosity
ξ	transformed coordinate x (Eq. (6))
e	fluid density
τ_w	shear stress on the surface of cylinder
Ψ	stream function

The Laminar Boundary Layer under the Coaxial Flow

REFERENCES

- 1. Sakiadis B. C.: AIChE J. 7, 467 (1961).
- 2. Sakiadis B. C.: AIChE J, 7, 221 (1961).
- 3, Koldenhof E. A.: AIChE J. 9, 411 (1963).
- 4. Pechoč V.: Thesis. Institute of Chemical Technology, Prague 1967.
- 5. Bourne D. E., Elliston D. G.: Int. J. Heat Mass Transfer 13, 583 (1970).
- 6. Vasudevan G., Middleman S.: AIChE J. 16, 614 (1970).
- 7. Lee W. W., Davis R. T.: Chem. Eng. Sci. 27, 2129 (1972).
- 8. Seban R. A., Bond R.: J. Aero. Sci. 18, 671 (1951).
- 9. Eshghy S., Hornbeck R. W.: Int. J. Heat Mass Transfer 10, 1757 (1967).
- 10. Sparrow E. M., Fleming O. P.: AIAA J. 2, 386 (1964).
- 11. Wanous D. J., Sparrow E. M.: AIAA J. 3, 147 (1965).
- 12. Jaffe N. A., Okamura T. T.: Z. Angew. Mathematik Phys. 19, 564 (1968).
- 13. Cebeci T.: J. Basic Eng. 92D, 545 (1970).
- 14. Glauert M. B., Lighthill M. J.: Proc. Roy. Soc. A230, 188 (1955).
- 15. Cebeci T. Private communication.
- 16. Fox V. G., Hagin F.: AlChE J. 17, 1014 (1971).

Translated by V. Staněk.