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Analytical solutions of the boundary layer on a continuous cylinder and in the flow past a cylinder 
for small values of the parameter X = vxjUR2 are used to determine the error of the friction 
coefficient calculated by the approximate Karman-Pohlhausen method. In case of the flow past 
a cylinder the earlier published results were confirmed and given precision; for the continuous 
cylinder it was found that the error of the approximate solution increases with X f rom 8% for 
X- - 0 to 8-7% for X= 0-2. According to Cebeci's calculations it is apparent that the error 
does not decrease even for larger X {X ^ 250) but remains between 8 and 9%. 

The paper deals with the solution of the laminar boundary layer on a continuous 
cylinder. An example of such a cylinder may be for instance a fibre of constant radius 
moving at a steady speed between the feeder and the winding reel. 

The problem of the boundary layer on a continuous moving flat surface and cy-
linder has been solved first by Sakiadis1,2. The solution on the cylinder was obtained 
by the approximate Karman-Pohlhausen method1 and analytically for the continu-
ous flat surface2. Further papers concerning the continuous cylinder use either 
identical methods of solution in only formal modifications3-3 , or other approximate 
methods6,7. For this reason this work concentrated on accurate solution of the 
boundary layer equations on a continuous cylinder for small values of the curvature 
parameter X (Eq. (6)). Simultaneously, the published solutions for the boundary 
layer in the flow past a cylinder8 - 13 were verified in the same region of the parameter 
X and given precision. 

THEORETICAL 

Differential equations for the laminar boundary layer in the flow past a cylinder 
and that on a continuous cylinder differ only in the boundary conditions. Their 
solutions, accordingly, will be obtained simultaneously. 

Designating the coordinate in the direction of the axis of the cylinder by x and that 
perpendicular to the axis by r (its origin at the axis), the respective velocities in the 
direction of and perpendicular to the axis by u and v, the radius of the cylinder 
by R and the constant velocity of the bulk flow (flow past a cylinder) or the speed 
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of the cylinder (cont inuous cylinder) by U, the laminar bounda ry layer may be 
described with commonly accepted simplifying assumptions by 

r(duldx) + d(rv)jdr = 0, (l) 

u(du\dx) + v(dujdr) = v[(d2tt/<3r2 + r~x du\dr)~\ , (2) 

with the bounda ry condit ions 

flow past a cylinder cont inuous cylinder 

r = R: u = v = 0 u = U ; v = 0 (3) 

r -> oo , or u — U ; v — 0 ; u — v = 0 ; du/dr = 0 . (4) 

x = 0 , r > R : dujdr = 0 

The famil iar t ransformat ion , i.e. in t roducing the s tream funct ion as 

d\f/jdx = — rv; di^/dr — ru , (5) 

the dimensionless coordinates £ and rj, to replace x and r as 

£ = 4(vxlR2U)°-5 = 4X°-5 , (6) 

r, = (C//vx)0 '5 [(r2 - R2)/4R] (7) 

and t h e dimensionless f u n c t i o n / ( £ , r}) instead of the s t ream func t ion \p as 

f(Z,r,)=*l(vxR2U)0-5 (8) 

yields the following part ial differential equa t ion 

drj 
rd2f , r d f d 2 f df d2/1 _ 

(A simplified n o t a t i o n / i s used for the funct ion / ( £ , 77) in the last equat ion for the sake 
of brevi ty) . 
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The boundary conditions in the new coordinates are 

flow past a cylinder continuous cylinder 

/(£, 0) = 0, /(£, 0) = 0, (10) 

(dfldrj\=o=0, {dfldrj)n = 0 = 2 . 

( S f l d r , ) , ^ 0 = 2 , ( d f l d n \ ^ = 0 . (12) 

For solving Eq. (9) in region of small values of £ one can use the power expansion 
of the funct ion / ( £ , */) as 

OO 

/ ( £ * ) = Z e / i W - (12) 
i = 0 

Taking only four terms of the last series which converges rapidly for small t, four 
ordinary differential equations for the functions f0 through f3 result: 

f'o + fof'o = 0 , (13) 

f i + f o f l ~ f o f i + 2 f o f i + Vfo+ f'o = 0 , (14) 

f"i + f o f l - 2 /0 /2 + 3 /0 /2 + f l f i + / i ( l + 2 / j ) - ( / 0 2 = 0 , (15) 

f'l + / 0 / 3 - 3 / 0 / 3 + 4 /0 /3 + ^7/1 + /2O + 2 / 0 - 3 / ; / 2 + 3 /1 /2 = 0 , (16) 

with the boundary conditions 

flow past a cylinder continuous cylinder 

>1 = 0: / = 0 / i = 0 (17) 

/; = 0 /o = 2; / ; = /2' = f i = 0 

1 co f'o = 2 - / ; = / 2 ' = / 3 = 0 / ; = 0 . (18) 

Eqs (23) through (16) have been solved by the Taylor expansion and the Runge -Ku t t a 
method taking by trial and error the value of / i ( 0 ) so as to satisfy to a maximum 
accuracy possible with the used calculator H P 9100 A the boundary condition (18). 
The accuracy of the solution was tested by repeated calculation with the integration 
step halved. 
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The max imum error, A, of the calculated values / j ( 0 ) shown in Table I together 
with the so far published data , is 5 . 1 0 ' " 1 0 . * 

The obtained solution enables calculation of the local and the mean friction coef-
ficient cf and cf to be made. The local friction coefficient 

Cf = IxJqU2 = + 0- 5 Re ~ 5[<72/(£, ^ 2 ] n = o (19) 

expressed in terms of the funct ions f { is 

cf = ± R e x - ° ' 5 £ 2 2 i _ 1 X ° ' 5 i / i ( 0 ) . (20) 
i = 0 

Similarly for the mean friction coefficient we have 

ct= ( 1 I X ) [ct dX = ± Re~ 0 ' 5 X 2 2 i ( i + 1 ) - 1 X ° - 5 i / i " ( 0 ) . (21) 
J o i = 0 

The positive sign in Eqs (19) th rough (21) refers to the flow past a cylinder; the nega-
tive sign to the cont inuous cylinder. 

Substi tuting the obtained values of / j ( 0 ) in Eqs (20) and (21) the expressions 
for the friction coefficients take the fo rm: 

for the flow past a cylinder 

c fRe°-5 = 0-66411 + 1-38864X0 '5 - 1-31316X + 3-25069X1-5 , (22) 

c f Re° ' 5 = 1-32823 + 1-38864X0 '5 - . 0 - 8 7 5 4 4 X + 1-62534X1"5 ; (23) 

for the cont inuous cylinder 

c f Re° ' 5 = 0-88750 + 0-76040X0 '5 - 0-14830X + 0-07437X1 '5 , (24) 

c f Re 0 ' 5 = 1-77499 + 0-76040JC0 '5 - 0-09887X + 0-03718* 1 , 5 . (25) 

]n view of the used expansion the applicability of these equat ions is restricted 
to X ^ 0-015 for the flow past a cylinder where the four th term of the series for the 
local coefficient amounts to 0-7% of the sum of the preceding terms and 30% of the 
third term. The applicability in case of the cont inuous cylinder, judging again from 
the magni tude of the four th term (22% of the third term and 0-6% of the sum of the 
preceding terms) is restricted to X ^ 0-2. 

* Deta i led tables of f ™(i}) f o r 0 sS i ^ 3, t h e o r d e r of der iva t ive 0 ^ m ^ 2 and for 
77 ^ 5-6 fo r the flow past a cyl inder , o r 77 ^ 18-4 f o r the c o n t i n u o u s cy l inder , will be made 
ava i l ab le u p o n reques t by the a u t h o r s . 
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A COMPARISON OF THE ACCURATE AND APPROXIMATE SOLUTIONS 

An approximate solution of the boundary layer equations by the Karman-Pohl-
hausen method has been performed for the flow past a cylinder by Glauert and Light-
hill14; for the continuous cylinder, as has been mentioned, by Sakiadis1. The friction 
coefficient was expressed from these solutions as 

c fRe°'5 = 2X°-5lA , (26) 

where A is the inverse value of the dimensionsless velocity gradient at the surface 
of the cylinder depending only on the parameter X 

A = ±(UlR)(drl8u)R, (27) 

with the positive (negative) sign for the flow past a cylinder (continuous cylinder). 
A as a function of X may be computed from equations obtained by modification 

of those presented in the original papers: 
Flow past a cylinder: 

oo 

X = X 2n~1An + ln2l(n + 1) (n + 2) ! (28) 
n = 1 

Continuous cylinder: 

X = £ 2nAn + lnl(n + 1) (w + 2) ! (29) 
n = 1 

A comparison of the presented accurate solution of Eq. (9) for small X with the 
approximate solution for the flow past a cylinder and a continuous cylinder is given 
in Tables II and III. 

Solution of the boundary layer on the continuous cylinder for large X has not been 
published to date. The values tabulated in Table IV were computed by the method 
due to Cebeci13 worked out for the flow past a cylinder.* 

C O N C L U S I O N 

The results for the flow past a cylinder give precision to the earlier analyses; it was 
found that the error of the approximate solution decreases with increasing X in the 
whole range of X, ( re fs 1 3 - 1 5 ) even though the absolute values of the deviations 
reported by various authors are somewhat different as a consequence of the various 
methods of solving Eq. (9). 

* The authors wish to thank Dr T. Cebeci for furnishing the results of numerical solution 
of Eq. (9) with the boundary condit ions fo r the cont inuous cyl inder 1 5 . 
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For the continuous cylinder, however, the deviation of the approximate and the 
accurate solution in region X ^ 0-2 increases which is confirmed also by Cebeci's 
results15 for small values of X (X ^ 0-25). In the region 0-25 ^ X ^ 250 the de-
viation of Cebeci's results15 remains practically constant and its fluctuation is prob-
ably caused by the numerical method of solution. 

The approximate solution of Sakiadis underestimates the friction factor for the 
continuous cylinder in region X ^ 250 by about 8%. The assumption of Bourne 
and Elliston5, that the error of Sakiadis' solution decreases with increasing X, thus 
is not correct. Nor are correct the results of Lee and Davis7 according to which the 
Sakiadis' solution for small values of X is correct but for large X overestimates 
the friction factor. Solution of Vasudevan and Middleman6 exhibiting marked 
deviations f rom Sakiadis' results in region of small X is based on false assumptions.16 

To give precision to Cebeci's solution in region 0-25 ^ X ^ 250 and its extension 
to X > 250 is the purpose of the next paper. 

LIST OF SYMBOLS 

A dimensionless inverse velocity gradient at the surface of cylinder (Eq. (27)) 
c( --- 2tw/U2q local friction coefficient 
cf mean friction coefficient 
/ dimensionless stream function (Eq. (8) and (12)) 
r radial coordinate originating on axis 
R radius of cylinder 
ReR = RUjv Reynolds number based on radius 
Rex = xU/v Reynolds number based on length 
u axial velocity component 
U speed of cylinder, or bulk fluid velocity 
v radial velocity component perpendicular to axis of cylinder 
x coordinate in direction of axis of cylinder 
X = Re^/Re^ transformed coordinate £ (Eq. (6)) 
a/ transformed coordinate r (Eq. (7)) 
v kinematic viscosity 
C transformed coordinate .v (Eq. (6)) 
q fluid density 
rw shear stress on the surface of cylinder 
y/ stream function 

Collect ion Czechoslov . Chem. Commun. [Vol. 41] [1976] 



The Laminar Boundary Layer under the Coaxial Flow 731 

R E F E R E N C E S 

1. Sakiadis B. C.: A I C h E J. 7, 467 (1961). 
2. Sakiadis B. C : A I C h E J. 7, 221 (1961). 
3. Koldenhof E. A.: AIChE J. 9, 411 (1963). 
4. Pechoc V.: Thesis. Institute of Chemical Technology, Prague 1967. 
5. Bourne D. E„ Elliston D. G.: Int. J. Heat Mass Transfer 13, 583 (1970). 
6. Vasudevan G., Middleman S.: A I C h E J. 16, 614 (1970). 
7. Lee W. W „ Davis R. T.: Chem. Eng. Sci. 27, 2129 (1972). 
8. Seban R. A., Bond R.: J. Aero. Sci. 18, 671 (1951). 
9. Eshghy S., Hornbeck R. W.: Int. J. Heat Mass Transfer 10, 1757 (1967). 

10. Sparrow E. M., Fleming O. P.: A I A A J. 2, 386 (1964). 
11. Wanous D. J., Sparrow E. M.: AIAA J. 3, 147 (1965). 
12. Jatfe N. A., Okamura T. T.: Z. Angew. Mathemat ik Phys. 19, 564 (1968). 
13. Cebeci T.: J. Basic Eng. 92D, 545 (1970). 
14. Glauert M. B., Lighthill M. J.: Proc. Roy. Soc. A230, 188 (1955). 
15. Cebeci T. Private communicat ion. 
16. Fox V. G., Hagin F.: A I C h E J. 17, 1014 (1971). 

Translated by V. Stanek. 
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