THE LAMINAR BOUNDARY LAYER UNDER THE COAXIAL FLOW PAST A CYLINDER AND ON A CONTINUOUS CYLINDER

V.Pechoč and J.Karniš
Research Institute of Chemical Fibres, Svit

Received July 28th, 1974

Abstract

Analytical solutions of the boundary layer on a continuous cylinder and in the flow past a cylinder for small values of the parameter $X=v \cdot x / U R^{2}$ are used to determine the error of the friction coefficient calculated by the approximate Kármán-Pohlhausen method. In case of the flow past a cylinder the earlier published results were confirmed and given precision; for the continuous cylinder it was found that the error of the approximate solution increases with X from 8% for $X-0$ to 8.7% for $X=0.2$. According to Cebecis calculations it is apparent that the error does not decrease even for larger $X(X \leqq 250)$ but remains between 8 and 9%.

The paper deals with the solution of the laminar boundary layer on a continuous cylinder. An example of such a cylinder may be for instance a fibre of constant radius moving at a steady speed between the feeder and the winding reel.

The problem of the boundary layer on a continuous moving flat surface and cylinder has been solved first by Sakiadis ${ }^{1,2}$. The solution on the cylinder was obtained by the approximate Kármán-Pohlhausen method ${ }^{1}$ and analytically for the continuous flat surface ${ }^{2}$. Further papers concerning the continuous cylinder use either identical methods of solution in only formal modifications ${ }^{3-5}$, or other approximate methods ${ }^{6,7}$. For this reason this work concentrated on accurate solution of the boundary layer equations on a continuous cylinder for small values of the curvature parameter X (Eq. (6)). Simultaneously, the published solutions for the boundary layer in the flow past a cylinder ${ }^{8-13}$ were verified in the same region of the parameter X and given precision.

THEORETICAL

Differential equations for the laminar boundary layer in the flow past a cylinder and that on a continuous cylinder differ only in the boundary conditions. Their solutions, accordingly, will be obtained simultaneously.

Designating the coordinate in the direction of the axis of the cylinder by x and that perpendicular to the axis by r (its origin at the axis), the respective velocities in the direction of and perpendicular to the axis by u and v, the radius of the cylinder by R and the constant velocity of the bulk flow (flow past a cylinder) or the speed
of the cylinder (continuous cylinder) by U, the laminar boundary layer may be described with commonly accepted simplifying assumptions by

$$
\begin{gather*}
r(\partial u / \partial x)+\partial(r v) / \partial r=0 \tag{1}\\
u(\partial u / \partial x)+v(\partial u / \partial r)=v\left[\left(\partial^{2} u / \partial r^{2}+r^{-1} \partial u / \partial r\right)\right] \tag{2}
\end{gather*}
$$

with the boundary conditions
flow past a cylinder continuous cylinder

$$
\begin{array}{lll}
r=R: & u=v=0 & u=U ; \quad v=0 \\
r \rightarrow \infty, \quad \text { or } & u=U ; \quad v=0 ; & u=v=0 ; \quad \partial u / \partial r=0 \tag{4}\\
x=0, \quad r>R: & \partial u / \partial r=0 &
\end{array}
$$

The familiar transformation, i.e. introducing the stream function as

$$
\begin{equation*}
\partial \psi / \partial x=-r v ; \quad \partial \psi / \partial r=r u \tag{5}
\end{equation*}
$$

the dimensionless coordinates ξ and η, to replace x and r as

$$
\begin{align*}
& \xi=4\left(v x / R^{2} U\right)^{0.5}=4 X^{0.5} \tag{6}\\
& \eta=(U / v x)^{0.5}\left[\left(r^{2}-R^{2}\right) / 4 R\right] \tag{7}
\end{align*}
$$

and the dimensionless function $f(\xi, \eta)$ instead of the stream function ψ as

$$
\begin{equation*}
f(\xi, \eta)=\psi /\left(v x R^{2} U\right)^{0.5} \tag{8}
\end{equation*}
$$

yields the following partial differential equation

$$
\begin{equation*}
\frac{\partial}{\partial \eta}\left[(1+\xi \eta) \frac{\partial^{2} f}{\partial \eta^{2}}\right]+f \frac{\partial^{2} f}{\partial \eta^{2}}+\xi\left[\frac{\partial f}{\partial \xi} \frac{\partial^{2} f}{\partial \eta^{2}}-\frac{\partial f}{\partial \eta} \frac{\partial^{2} f}{\partial \xi \partial \eta}\right]=0 \tag{9}
\end{equation*}
$$

(A simplified notation f is used for the function $f(\xi, \eta)$ in the last equation for the sake of brevity).

The boundary conditions in the new coordinates are
flow past a cylinder continuous cylinder

$$
\begin{array}{ll}
f(\xi, 0)=0, & f(\xi, 0)=0 \\
(\partial f / \partial \eta)_{\eta=0}=0, & (\partial f / \partial \eta)_{n=0}=2 \\
(\partial f / \partial \eta)_{\eta \rightarrow \infty}=2, & (\partial f / \partial \eta)_{\eta \rightarrow \infty}=0 \tag{11}
\end{array}
$$

For solving Eq. (9) in region of small values of ξ one can use the power expansion of the function $f(\xi, \eta)$ as

$$
\begin{equation*}
f(\xi, \eta)=\sum_{i=0}^{\infty} \xi^{\mathrm{i}} f_{\mathrm{i}}(\eta) \tag{12}
\end{equation*}
$$

Taking only four terms of the last series which converges rapidly for small ξ four ordinary differential equations for the functions f_{0} through f_{3} result:
$f_{0}^{\prime \prime \prime}+f_{0} f_{0}^{\prime \prime}=0$,
$f_{1}^{\prime \prime \prime}+f_{0} f_{1}^{\prime \prime}-f_{0}^{\prime} f_{1}^{\prime}+2 f_{0}^{\prime \prime} f_{1}+\eta f_{0}^{\prime \prime \prime}+f_{0}^{\prime \prime}=0$,
$f_{2}^{\prime \prime \prime}+f_{0} f_{2}^{\prime \prime}-2 f_{0}^{\prime} f_{2}^{\prime}+3 f_{0}^{\prime \prime} f_{2}+\eta f_{1}^{\prime \prime \prime}+f_{1}^{\prime \prime}\left(1+2 f_{1}\right)-\left(f_{1}^{\prime}\right)^{2}=0$,
$f_{3}^{\prime \prime \prime}+f_{0} f_{3}^{\prime \prime}-3 f_{0}^{\prime} f_{3}^{\prime}+4 f_{0}^{\prime \prime} f_{3}+\eta f_{2}^{\prime \prime \prime}+f_{2}^{\prime \prime}\left(1+2 f_{1}\right)-3 f_{1}^{\prime} f_{2}^{\prime}+3 f_{1}^{\prime \prime} f_{2}=0$,
with the boundary conditions
flow past a cylinder

$$
\begin{array}{lll}
\eta=0: & f_{\mathrm{i}}=0 & f_{\mathbf{i}}=0 \\
& f_{\mathrm{i}}^{\prime}=0 & f_{0}^{\prime}=2 ; \\
\eta \rightarrow \infty: & f_{0}^{\prime}=2 ; \quad f_{1}^{\prime}=f_{2}^{\prime}=f_{3}^{\prime}=0 & f_{\mathrm{i}}^{\prime}=0 \tag{18}
\end{array}
$$

Eqs (13) through (16) have been solved by the Taylor expansion and the Runge-Kutta method taking by trial and error the value of $f_{\mathrm{i}}^{\prime \prime}(0)$ so as to satisfy to a maximum accuracy possible with the used calculator HP 9100 A the boundary condition (18). The accuracy of the solution was tested by repeated calculation with the integration step halved.

The maximum error, Δ, of the calculated values $f_{i}(0)$ shown in Table I together with the so far published data, is 5.10^{-10}.*

The obtained solution enables calculation of the local and the mean friction coefficient c_{f} and \bar{c}_{f} to be made. The local friction coefficient

$$
\begin{equation*}
c_{\mathrm{f}}=2 \tau_{\mathrm{w}} / \varrho U^{2}= \pm 0.5 \mathrm{Re}_{\mathrm{x}}^{-0.5}\left[\partial^{2} f(\xi, \eta) / \partial \eta^{2}\right]_{\eta=0} \tag{19}
\end{equation*}
$$

expressed in terms of the functions f_{i} is

$$
\begin{equation*}
c_{\mathrm{i}}= \pm \operatorname{Re}_{\mathrm{x}}^{-0.5} \sum_{\mathrm{i}=0}^{3} 2^{2 \mathrm{i}-1} X^{0.5 i} f_{\mathrm{i}}^{\prime \prime}(0) \tag{20}
\end{equation*}
$$

Similarly for the mean friction coefficient we have

$$
\begin{equation*}
\bar{c}_{\mathrm{f}} \equiv(1 / X) \int_{0}^{\mathrm{x}} c_{\mathrm{f}} \mathrm{~d} X= \pm \operatorname{Re}_{\mathrm{x}}^{-0.5} \sum_{\mathrm{i}=0}^{3} 2^{2 \mathrm{i}}(i+1)^{-1} X^{0.5 \mathrm{i}} f_{\mathrm{i}}^{\prime \prime}(0) \tag{2l}
\end{equation*}
$$

The positive sign in Eqs (19) through (21) refers to the flow past a cylinder; the negative sign to the continuous cylinder.

Substituting the obtained values of $f_{\mathrm{i}}^{\prime \prime}(0)$ in Eqs (20) and (21) the expressions for the friction coefficients take the form:
for the flow past a cylinder

$$
\begin{gather*}
c_{\mathrm{f}} \operatorname{Re}_{\mathrm{x}}^{0.5}=0.66411+1.38864 X^{0.5}-1.31316 X+3.25069 X^{1.5}, \tag{22}\\
\bar{c}_{\mathrm{f}} \operatorname{Re}_{x}^{0.5}=1.32823+1.38864 X^{0.5}-.0 .87544 X+1.62534 X^{1.5} \tag{23}
\end{gather*}
$$

for the continuous cylinder

$$
\begin{align*}
& c_{\mathrm{f}} \mathrm{Re}_{\mathrm{x}}^{0.5}=0.88750+0.76040 X^{0.5}-0.14830 X+0.07437 X^{1.5} \tag{24}\\
& \bar{c}_{\mathrm{f}} \mathrm{Re}^{0.5}=1.77499+0.76040 X^{0.5}-0.09887 X+0.03718 X^{1.5} \tag{25}
\end{align*}
$$

In view of the used expansion the applicability of these equations is restricted to $X \leqq 0.015$ for the flow past a cylinder where the fourth term of the series for the local coefficient amounts to 0.7% of the sum of the preceding terms and 30% of the third term. The applicability in case of the continuous cylinder, judging again from the magnitude of the fourth term $(22 \%$ of the third term and 0.6% of the sum of the preceding terms) is restricted to $X \leqq 0.2$.

[^0]Table 1
Values of $f_{i}^{\prime \prime}(0)$ for the Flow Past a Cylinder and a Continuous Cylinder

${ }^{a}$ Owing to a different substitution the original paper reports the value of $\left.f_{0}^{\prime \prime} 0\right) / 4$.

Local Friction Coefficient for the Flow Past a Cylinder

$(28)-(22) \%$ $c_{\mathrm{f}} \operatorname{Re}_{\mathrm{x}}^{0 \cdot 5}$

Eq. (28)
0.58155
p
$\stackrel{8}{0}$
e
0
7
N
2
6
0.60646
13.00
12.93
-12.88
-12.68
0.0005
Table II.

A Comparison of the Accurate and Approximate Solutions

An approximate solution of the boundary layer equations by the Kármán-Pohlhausen method has been performed for the flow past a cylinder by Glauert and Lighthill ${ }^{14}$; for the continuous cylinder, as has been mentioned, by Sakiadis ${ }^{1}$. The friction coefficient was expressed from these solutions as

$$
\begin{equation*}
c_{\mathrm{f}} \mathrm{Re}_{\mathrm{x}}^{0.5}=2 X^{0.5} / A \tag{26}
\end{equation*}
$$

where A is the inverse value of the dimensionsless velocity gradient at the surface of the cylinder depending only on the parameter X

$$
\begin{equation*}
A= \pm(U / R)(\partial r / \partial u)_{\mathrm{R}} \tag{27}
\end{equation*}
$$

with the positive (negative) sign for the flow past a cylinder (continuous cylinder).
A as a function of X may be computed from equations obtained by modification of those presented in the original papers:
Flow past a cylinder:

$$
\begin{equation*}
X=\sum_{\mathrm{n}=1}^{\infty} 2^{\mathrm{n}-1} A^{\mathrm{n}+1} n^{2} /(n+1)(n+2)! \tag{28}
\end{equation*}
$$

Continuous cylinder:

$$
\begin{equation*}
X=\sum_{n=1}^{\infty} 2^{n} A^{n+1} n /(n+1)(n+2)! \tag{29}
\end{equation*}
$$

A comparison of the presented accurate solution of Eq. (9) for small X with the approximate solution for the flow past a cylinder and a continuous cylinder is given in Tables II and III.

Solution of the boundary layer on the continuous cylinder for large X has not been published to date. The values tabulated in Table IV were computed by the method due to Cebeci 13 worked out for the flow past a cylinder.*

CONCLUSION

The results for the flow past a cylinder give precision to the earlier analyses; it was found that the error of the approximate solution decreases with increasing X in the whole range of $X,\left(\right.$ refs $\left.^{13-15}\right)$ even though the absolute values of the deviations reported by various authors are somewhat different as a consequence of the various methods of solving Eq. (9).

[^1]Table III

Table IV
Local Friction Coefficient for a Continuous Cylinder and $X \leqq 250$

X	$c_{\mathrm{f}} \mathrm{Re}_{\mathrm{x}}^{0 \cdot 5}$		$(b-a) / a \%$	X	$c_{f} \mathrm{Re}_{x}^{0 \cdot 5}$		$(b-a) / a \%$
	$\begin{gathered} \text { Cebeci }^{15} \\ a \end{gathered}$	$\begin{gathered} \text { Eq. (29) } \\ b \end{gathered}$			$\begin{gathered} \text { Cebeci }^{15} \\ a \end{gathered}$	$\begin{gathered} \text { Eq. (29) } \\ b \end{gathered}$	
$0 \cdot 00025$	0.8980	0.82702	-7.90	1	1.549	1.41967	-8.35
$0 \cdot 00125$	0.9131	0.83997	-8.01	2.5	1.866	1.73112	-8.21
0.0025	0.9237	0.84963	-8.02	5	2.244	2.06136	-8.14
0.005	0.9389	0.86324	-8.06	10	2.721	$2 \cdot 50196$	-8.05
0.01	0.9602	0.88237	-8.11	25	3.596	$3 \cdot 31547$	-7.80
0.02	0.9903	0.90920	-8.19	50	4.546	4-16981	-8.28
0.025	1.002	0.91994	-8.19	100	5.798	5.30616	-8.48
0.1	$1 \cdot 113$	1.01976	-8.38	200	$7 \cdot 458$	6.81956	-8.56
0.25	1.236	$1 \cdot 13183$	-8.43	250	$8 \cdot 125$	7.40704	-8.84

For the continuous cylinder, however, the deviation of the approximate and the accurate solution in region $X \leqq 0.2$ increases which is confirmed also by Cebeci's results ${ }^{15}$ for small values of $X(X \leqq 0 \cdot 25)$. In the region $0.25 \leqq X \leqq 250$ the deviation of Cebeci's results ${ }^{15}$ remains practically constant and its fluctuation is probably caused by the numerical method of solution.

The approximate solution of Sakiadis underestimates the friction factor for the continuous cylinder in region $X \leqq 250$ by about 8%. The assumption of Bourne and Elliston ${ }^{5}$, that the error of Sakiadis' solution decreases with increasing X, thus is not correct. Nor are correct the results of Lee and Davis ${ }^{7}$ according to which the Sakiadis' solution for small values of X is correct but for large X overestimates the friction factor. Solution of Vasudevan and Middleman ${ }^{6}$ exhibiting marked deviations from Sakiadis' results in region of small X is based on false assumptions. ${ }^{16}$

To give precision to Cebeci's solution in region $0.25 \leqq X \leqq 250$ and its extension to $X>250$ is the purpose of the next paper.

LIST OF SYMBOLS

A	dimensionless inverse velocity gradient at the surface of cylinder (Eq. (27))
$c_{\mathrm{f}}=2 \tau_{\mathrm{w} /} / U^{2} \varrho$ local friction coefficient	
\bar{c}_{f}	mean friction coefficient
f	dimensionless stream function (Eq. (8) and (12))
r	radial coordinate originating on axis
R	radius of cylinder
$\mathrm{Re}_{\mathrm{R}}=R U / \nu$	Reynolds number based on radius
$\operatorname{Re}_{\mathrm{x}}=x \mathrm{x} U / \mathrm{l}$	Reynolds number based on length
u	axial velocity component
U	speed of cylinder, or bulk fluid velocity
v	radial velocity component perpendicular to axis of cylinder
x	coordinate in direction of axis of cylinder
$X=\mathrm{Re}_{\mathrm{x}} / \mathrm{Re}_{\mathrm{R}}^{2}$ transformed coordinate ζ (Eq. (6))	
η	transformed coordinate r (Eq. (7))
v	kinematic viscosity
ξ	transformed coordinate x (Eq. (6))
$\underline{\square}$	fluid density
τ_{w}	shear stress on the surface of cylinder
ψ	stream function

REFERENCES

1. Sakiadis B. C.: AlChE J. 7, 467 (1961).
2. Sakiadis B. C.: AlChE J. 7, 221 (1961).
3. Koldenhof E. A.: AIChE J. 9, 411 (1963).
4. Pechoč V.: Thesis. Institute of Chemical Technology, Prague 1967.
5. Bourne D. E., Elliston D. G.: Int. J. Heat Mass Transfer 13, 583 (1970).
6. Vasudevan G., Middleman S.: AlChE J. 16, 614 (1970).
7. Lee W. W., Davis R. T.: Chem. Eng. Sci. 27, 2129 (1972).
8. Seban R. A., Bond R.: J. Aero. Sci. 18, 671 (1951).
9. Eshghy S., Hornbeck R. W.: Int. J. Heat Mass Transfer 10, 1757 (1967).
10. Sparrow E. M., Fleming O. P.: AlAA J. 2, 386 (1964).
11. Wanous D. J., Sparrow E. M.: AIAA J. 3, 147 (1965).
12. Jaffe N. A., Okamura T. T.: Z. Angew. Mathematik Phys. 19, 564 (1968).
13. Cebeci T.: J. Basic Eng. 92D, 545 (1970).
14. Glauert M. B., Lighthill M. J.: Proc. Roy. Soc. A230, 188 (1955).
15. Cebeci T. Private communication.
16. Fox V. G., Hagin F.: AlChE J. 17, 1014 (1971).
[^2]
[^0]: * Detailed tables of $f_{i}^{\mathrm{m}}(\eta)$ for $0 \leqq i \leqq 3$, the order of derivative $0 \leqq m \leqq 2$ and for $\eta \leqq 5.6$ for the flow past a cylinder, or $\eta \leqq 18.4$ for the continuous cylinder, will be made available upon request by the authors.

[^1]: * The authors wish to thank Dr T. Cebeci for furnishing the results of numerical solution of Eq. (9) with the boundary conditions for the continuous cylinder ${ }^{15}$.

[^2]: Translated by V. Stanĕk.

